您选择的条件: Qihuang Gong
  • Integrated vortex soliton microcombs

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The frequency and orbital angular momentum (OAM) are independent physical properties of light that both offer unbounded degrees of freedom. However, creating, processing, and detecting high-dimensional OAM states have been a pivot and long-lasting task, as the complexity of the required optical systems scales up drastically with the OAM dimension. On the other hand, mature toolboxes -- such as optical frequency combs -- have been developed in the frequency domain for parallel measurements with excellent fidelity. Here we correlate the two dimensions into an equidistant comb structure on a photonic chip. Dissipative optical solitons formed in a nonlinear microresonator are emitted through the engraved angular gratings with each comb line carrying distinct OAM. Such one-to-one correspondence between the OAM and frequencies manifests state-of-the-art extinction ratios over 18.5 dB, enabling precision spectroscopy of optical vortices. The demonstrated vortex soliton microcombs provide coherent light sources that are multiplexed in the spatial and frequency domain, having the potential to establish a new modus operandi of high-dimensional structured light.

  • Controlled plasmon-enhanced fluorescence by spherical microcavity

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: A surrounding electromagnetic environment can engineer spontaneous emissions from quantum emitters through the Purcell effect. For instance, a plasmonic antenna can efficiently confine an electromagnetic field and enhance the fluorescent process. In this study, we demonstrate that a photonic microcavity can modulate plasmon-enhanced fluorescence by engineering the local electromagnetic environment. Consequently, we constructed a plasmon-enhanced emitter (PE-emitter), which comprised a nanorod and a nanodiamond, using the nanomanipulation technique. Furthermore, we controlled a polystyrene sphere approaching the PE-emitter and investigated in situ the associated fluorescent spectrum and lifetime. The emission of PE-emitter can be enhanced resonantly at the photonic modes as compared to that within the free spectral range. The spectral shape modulated by photonic modes is independent of the separation between the PS sphere and PE-emitter. The band integral of the fluorescence decay rate can be enhanced or suppressed after the PS sphere couples to the PE-emitters, depending on the coupling strength between the plasmonic antenna and the photonic cavity. These findings can be utilized in sensing and imaging applications.

  • Vibrational Kerr solitons in an optomechanical microresonator

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Soliton microcombs based on Kerr nonlinearity in microresonators have been a prominent miniaturized coherent light source. Here, for the first time, we demonstrate the existence of Kerr solitons in an optomechanical microresonator, for which a nonlinear model is built by incorporating a single mechanical mode and multiple optical modes. Interestingly, an exotic vibrational Kerr soliton state is found, which is modulated by a self-sustained mechanical oscillation. Besides, the soliton provides extra mechanical gain through the optical spring effect, and results in phonon lasing with a red-detuned pump. Various nonlinear dynamics is also observed, including limit cycle, higher periodicity, and transient chaos. This work provides a guidance for not only exploring many-body nonlinear interactions, but also promoting precision measurements by featuring superiority of both frequency combs and optomechanics.

  • Spectrally multiplexed and ultrabright entangled photon pairs in a lithium niobate microresonator

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: On-chip bright quantum sources with multiplexing ability are extremely high in demand for the integrated quantum networks with unprecedented scalability and complexity. Here, we demonstrate an ultrabright and broadband biphoton quantum source generated in a lithium niobate microresonator system.Without introducing the conventional domain poling, the on-chip microdisk produces entangled photon pairs covering a broad bandwidth promised by natural phase matching in spontaneous parametric down conversion.Experimentally, the multiplexed photon pairs are characterized by $30\ \rm nm$ bandwidth limited by the filtering system, which can be furthered enlarged.Meanwhile, the generation rate reaches $5.13\ {\rm MHz}/\upmu \rm W$ with a coincidence-to-accidental ratio up to $804$.Besides, the quantum source manifests the prominent purity with heralded single photon correlation $g_H^{(2)}(0)=0.0098\pm0.0021$ and energy-time entanglement with excellent interference visibility of $96.5\%\pm1.9\%$. Such quantum sources at the telecommunication band pave the way for high-dimensional entanglement and future integrated quantum information systems.

  • Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The strong coupling between photons and matter excitations such as excitons, phonons, and magnons is of central importance in the study of light-matter interactions. Bridging the flying and stationary quantum states, the strong light-matter coupling enables the coherent transmission, storage, and processing of quantum information, which is essential for building photonic quantum networks. Over the past few decades, exciton-polaritons have attracted substantial research interest due to their half-light-half-matter bosonic nature. Coupling exciton-polaritons with magnetic orders grants access to rich many-body phenomena, but has been limited by the availability of material systems that exhibit simultaneous exciton resonances and magnetic ordering. Here we report magnetically-dressed microcavity exciton-polaritons in the van der Waals antiferromagnetic (AFM) semiconductor CrSBr coupled to a Tamm plasmon microcavity. Angle-resolved spectroscopy reveals an exceptionally high exciton-polariton coupling strength attaining 169 meV, demonstrating ultrastrong coupling that persists up to room temperature. Temperature-dependent exciton-polariton spectroscopy senses the magnetic order change from AFM to paramagnetism in CrSBr, confirming its magnetic nature. By applying an out-of-plane magnetic field, an effective tuning of the polariton energy is further achieved while maintaining the ultrastrong exciton-photon coupling strength, which is attributed to the spin canting process that modulates the interlayer exciton interaction. Our work proposes a hybrid quantum platform enabled by robust opto-electronic-magnetic coupling, promising for quantum interconnects and transducers.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心